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Q: How does the blonde lady help the boy in

9.9s | Ground truth: hold him 12s

red to keep his balance at the end of the video?

10s | TOGA: Hold his hands [10, 12] 125

1.2s [ Ground truth: standup ] 4.9s

runs away at the back?

3.6s | TOGA: stand up [3.6,5.6] | 5.65

‘ Q: What does the boy in red do as the girl

Figure 1. We present an approach for open-ended grounded video question answering. Given a video and open-ended questions, we
generate open-ended responses with the grounding as Answer [start time, end time]. We consider long videos with multiple
questions and answers per video. The questions refer to the interaction between multiple actors and the temporal ordering of events.

Abstract

We address the problem of video question answering
(video QA) with temporal grounding in a weakly supervised
setup, without any temporal annotations. Given a video and
a question, we generate an open-ended answer grounded
with the start and end time. For this task, we propose
TOGA : a vision-language model for Temporally Grounded
Open-Ended Video QA with Weak Supervision. We instruct-
tune TOGA to jointly generate the answer and the temporal
grounding. We operate in a weakly supervised setup where
the temporal grounding annotations are not available. We
generate pseudo labels for temporal grounding and ensure
the validity of these labels by imposing a consistency con-
straint between the question of a grounding response and
the response generated by a question referring to the same
temporal segment. We notice that jointly generating the an-
swers with the grounding improves performance on ques-
tion answering as well as grounding. We evaluate TOGA
on grounded QA and open-ended QA tasks. For grounded
QA, we consider the NExT-GQA benchmark, which is de-
signed to evaluate weakly supervised grounded question an-
swering. For open-ended QA, we consider the MSVD-QA
and ActivityNet-QA benchmarks. We achieve state-of-the-
art performance for both tasks on these benchmarks.

Work partly done during Ayush Gupta’s internship at SRI.

1. Introduction

We propose a weakly-supervised framework for grounded
video question answering (videoQA). This framework gen-
erates open-ended, free-form sentence answers to video-
based questions, providing temporal grounding with start
and end times (as shown in Fig. 1). We achieve this without
relying on expensive temporal annotations.

Grounded video question answering is challenging as, in
addition to generating correct answers, it requires localizing
evidence to support the answer [49]. The challenge is more
prominent in a weakly supervised setup where grounding
annotations are unavailable. Since each video can have
multiple questions with overlapping temporal groundings,
each answer needs to be grounded with a distinct temporal
window. We consider relatively long videos with an av-
erage length of 40 seconds consisting of complex causal
and temporal questions [49]. Generating correct answers
to these questions requires understanding the temporal or-
dering of events and the spatiotemporal interaction between
actors and objects. Further, we consider open-ended eval-
uation instead of a multiple-choice QA setup like previous
works [54, 56], further enhancing the challenge.

We propose TOGA - a vision-language model (VLM)
for the grounded videoQA task to address these challenges.
TOGA builds a video processing framework and com-
bines that with a large language model (LLM)-based text
processing framework to process questions and generate



open-ended answers. We instruction-tune TOGA to jointly
generate answers with temporal groundings in the format:
Answer [start time, end time]. Given a video
and a question, we sample video frames and compute visual
features using a pre-trained vision transformer encoder [34].
The question is processed with the LLM tokenizer and em-
bedding layer [16] to capture text features. Inspired by pre-
vious work [8, 12, 18, 46], we utilize a multi-scale vision-
language connector (MS-VLC) to align the video and text
features. MS-VLC processes the video at two granulari-
ties: one at a low frame rate to capture low-frequency tem-
poral features and another at a high frame rate to capture
high-frequency temporal features. Finally, we instruction-
tune the LLM decoder [16] to jointly generate open-ended
answers with temporal grounding by leveraging the cross-
attention between text features and the multi-scale video
features. Jointly generating answers with groundings allows
capturing the dependency between an answer and the corre-
sponding grounding duration, improving QA and grounding
accuracy compared to the approaches that independently
predict answers and their grounding [52, 54, 56].

To operate in a weakly supervised setup without ground-
ing labels, we propose a multi-stage training approach.
Firstly, we train TOGA to generate answers without ground-
ing by leveraging the question-answer annotations and
video descriptions. Then, this model is used to gen-
erate pseudo-labels for temporal grounding. We se-
lect temporal segments with specific starting and ending
times and ask questions corresponding to each segment.
The answers, along with the selected starting and end-
ing times, are considered noisy grounding labels for the
corresponding questions. Next, we instruction-tune the
model to accept prompts with temporal references such
as What is the activity in [10, 20]? and
produce responses with temporal grounding A boy in
a red shirt is running [10, 20]. Instruction
tuning extends the model’s abilities to accept temporal ref-
erences in questions and produce grounding predictions in
the answers. However, the grounding performance is lim-
ited due to noisy temporal labels. We improve the ground-
ing performance by imposing a consistency constraint while
generating the pseudo labels. We select the labels where
the answer with a temporal grounding matches a question
with the same temporal segment as the reference. For
example, let’s assume the temporally grounded answer to
the question What is the boy in a red shirt
doing? is The boy is running [10, 20]. Then
the answer to a corresponding referring question What 1is
happening in [10, 20]? is expected to match with
A boy in a red shirt is running. Maintain-
ing consistency between the answers to the referring and
grounding questions is crucial in a weakly supervised setup,
as shown in our ablation studies.

TOGA has several advantages over existing approaches.
We jointly generate answers with the groundings. Thus,
the model can adjust the temporal duration based on the
answers by capturing the correlation between the answer
and the grounding. Approaches making independent pre-
dictions [52, 54, 56] may lack this ability. We instruction-
tune the language decoder to generate open-ended answers.
Thus, we are not limited to restrictive formats of answers,
such as choosing an answer from multiple choices or an-
swering with single-word responses. Finally, we use con-
sistency constraints to generate pseudo-labels for training
with weak supervision. TOGA does not rely on temporal
annotations or external models to generate annotations [41].

Our main contributions include:

* We propose TOGA, a large vision-language model for
open-ended grounded videoQA. TOGA jointly generates
open-ended answers with temporal grounding.

* TOGA operates in a weakly supervised setup where
groundings annotations are unavailable. We train the
model with reliable pseudo labels by imposing consis-
tency between the answers to temporal grounding and
temporal referring questions.

* We evaluate our approach on weakly supervised temporal
grounding and video QA tasks and achieve state-of-the-
art performance.

2. Related Work

Video question answering. Video QA aims to answer
questions related to the visual content in videos. Com-
pared to image visual question answering [1, 10], videoQA
requires capturing the temporal evolution of scenes. Sev-
eral approaches are proposed to address this task [7, 9, 14,
15,19, 21, 22, 38, 47, 59]. Some approaches only utilize
visual cues for answering [14, 15, 47]. However, others
utilize additional modalities, like transcripts or subtitles of
videos, or the movie plot [21, 22, 38]. External knowledge
bases [31, 36] can be effective for the task [7, 9]. However,
most videoQA approaches commonly consider a multiple-
choice setup, where the task is to select a candidate answer
from a set of predefined options. We consider an open-
ended setup and generate free-form answers.

Open-ended video QA More recently, with the advance-
ment of LLMs [32, 39, 40], videoQA approaches aim to
generate open-ended answers [5, 23, 25, 28, 37, 42, 43, 48,
52, 57]. These methods combine vision module and lan-
guage models to develop general-purpose VLMs [5, 23, 25,
28, 57]. These models are typically trained on large-scale
datasets with various multimodal tasks. Yang et al., [52]
develop specialized models that are fine-tuned for the target
video QA task. There are parameter-free methods that use
the collaboration between multiple VLM agents [37, 42, 43]
for the video QA task. However, many current approaches
are not able to provide evidence for the generated answers
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Figure 2. We propose a VLM framework for grounded videoQA. Given an input video, we sample frames and compute framewise features
using a vision encoder. A multi-scale vision language connector (MS-VLC) is employed to process the framewise features at two temporal
resolutions: a sparse and a dense scale. The input question is processed with a chat template according to the desired prompt format. The
prompt is processed through a tokenizer and a frozen language encoder to generate tokenwise text features. The MS-VLC module is trained
to align the multiscale vision and text features. Finally, the language decoder is trained to generate answers with temporal grounding.

in the video in the form of grounding and may be relying on
language priors instead of true visual reasoning [48]. We
focus on addressing this issue by grounding the answers in
videos with temporal segments.

Grounded video QA. Grounded video QA aims to gen-
erate answers and provide evidence as a timestamp. Some
works address this by exploring the similarity between vi-
sual and textual content [21, 22, 53]. However, these ap-
proaches tend to be biased towards localizing subtitles in
TV shows [21] or only being able to deal with a few objects
[53]. Some recent works leverage the power of VLMs for
this task [12, 33, 41, 45], but these need expensive temporal
annotations for training, or generate grounding annotations
externally. To overcome this, some works use a weakly
supervised setup where temporal annotations are not avail-
able [49, 54, 56]. However, these approaches consider a
multiple-choice setup, with potential answers provided to
the model during evaluation.

Unlike existing approaches, TOGA aims to generate
temporally grounded, open-ended answers in a weakly su-
pervised setup without ground truth temporal annotations.

3. Approach

Our VLM framework has four main modules: 1) a vi-
sion encoder to compute frame-wise features from videos,
2) a large-language text encoder to compute text features
from questions, 3) a multi-scale vision-language connec-
tor (MS-VLC) to align the vision and text features facili-

tating answer generation, and 4) a large-language text de-
coder to generate open-ended answers with grounding as
Answer [start time, end time]. Our approach
is trained using our proposed multi-stage training frame-
work leveraging consistency between predictions to learn
the grounding ability without temporal labels. Among the
four components, vision and text encoders are kept frozen
while the MS-VLC and text decoder are trained, like pre-
vious works [26]. The framework is shown in Fig. 2. We
describe the components below.

Vision encoder. Given a video, we uniformly sample
frames and compute frame-wise features. We choose the
CLIP [34] vision encoder that is trained with large-scale
vision-language datasets. We keep this encoder frozen as
it already generates the text-aligned features.

Text encoder. We process the question with an LLM
text encoder. The text encoder combines the tokenizer and
the embedding layer of an LLM. This module generates text
features that feed to the text decoder. Following the com-
mon practice [5, 25, 26], we keep this module frozen as it is
pre-trained on large and diverse text datasets.

Multi-scale vision-language connector (MS-VLC).
Given the framewise features, we aim to capture the tempo-
ral cues to generate answers with temporal grounding. This
module is trained to generate video features that are aligned
with the text features derived from the question. The MS-
VLC module processes the framewise features at two tem-
poral resolutions: a sparse scale with a low frame rate to
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Figure 3. We train TOGA in three stages. Each stage focuses on a specific task with prompts designed for the task. Q. is a grounding
question where a temporal grounding is expected in the response, such as What is the boy doing?. Q is a referring question
focusing on a temporal segment in the video, such as What is happening in [25, 73]. We impose consistency on the answers
to Qg and Q;. These two queries are expected to have the same answer play with toy. Further, we ensure the answer matches the
ground truth (GT) answer. The multistage training gradually enables question answering, temporal referring, and temporal grounding.
Temporal referring and temporal grounding enable grounding with weak supervision.

capture low-frequency temporal cues and a dense scale with
a high frame rate to capture high-frequency temporal cues.
We sample 4 frames at the sparse scale and 16 frames at the
dense scale. The sparse module captures the long-term tem-
poral features suitable for grounding longer segments, while
the dense module captures the short-term temporal features
suitable for grounding shorter segments. Each VLC block
is implemented with RegNet [35] and 3D convolutions [5].
The parameters are shared between the two VLC blocks.
Our experiments show that the MS-VLC is crucial for both
accurate answering and grounding. Processing time series
at multiple scales is shown to be effective for activity recog-
nition in videos [8, 46] and event detection in audio [18].

Text decoder. We train an LLM text decoder to gener-
ate answers from multi-scale video features and token-wise
text features. We consider Mistral-7B Instruct [16] as the
language decoder. This module learns the cross-attention
between the multi-scale video features and the text fea-
tures to generate answers in the desired format. This al-
lows us to jointly generate open-ended answers with tem-
poral grounding, unlike the approaches with frozen text de-
coder [52, 54, 56] that generate the answer and grounding
separately. We train the model on the next token prediction
task as commonly used in language models [30, 32, 40].

Multi-stage training. We propose a multi-stage training
strategy for temporally grounded Video QA under weak
supervision. First, we train only the MS-VLC module
to align multiscale video and text features similar to

[26]. This alignment is crucial for the downstream tasks.
Given a question input, the goal is to generate aligned
visual features enabling the text decoder to produce
corresponding answers. We consider diverse prompt and
response pairs for training at this stage, which include
video captioning, sentence completion, and question
answering. Second, we instruction-tune the MS-VLC
and the language decoder modules for the grounding
task. The main goal of this stage is to train the model
to understand prompts with temporal references such
as What does the boy do at [10, 20]7?
and produce responses with temporal grounding
A boy in a red shirt is running [10, 20].
As we do not have temporal annotations in the weakly
supervised setup, we generate pseudo-temporal labels for
training. We crop temporal segments in videos with known
start and end times. We generate descriptions for these
segments by considering them as full videos by using the
model trained in the previous stage. These descriptions
with the selected start and end times are considered
as pseudo labels for answers and temporal grounding,
respectively. Finally, we train for accurate grounding by
imposing a consistency constraint between the grounding
response and the response generated by a question with
the same grounding as input. For example, let’s consider
a response Stands up [5, 10] corresponding to a
query What does the boy in red do after
the girl left? Then we generate a paired question



as What does the boy do in [5, 10]? with
the same start and end times. We train the model to produce
a consistent response Stands up. Furthermore, based
on the available question-answer annotations, we ensure
the answer Stands up is accurate. These self-consistent
question-answers with temporal labels enable TOGA to
improve both answering and grounding accuracy.

Prompt design. We design prompts suitable for the
tasks at various stages of training as shown in Fig. 3. We
define a special <video> token to include visual features
with text tokens, like [5, 25]. For vision-text alignment,
we consider multiple user prompts to train the MS-VLC
module. For instruction tuning, we design prompts to in-
clude temporal references. Since we ask the model to out-
put the grounding as text tokens, defining a specific for-
mat for the grounding outputs is necessary. This format
is provided as part of the prompt in the individual stages
of training. Specifically, we include the text ‘Answer in
the format <format>’ as part of the user prompt, spec-
ifying the format based on the task. We notice that in-
cluding the output format in the user prompt is important
to generate grounding responses. We use the following
formats: 1) answer when we only generate the answer,
2) [<start>, <end>] when we only generate tem-
poral grounding, or 3) answer [<start>, <end>]
when we generate an answer with grounding.

Inference. We use the same system prompt during in-
ference. We add instructions specifying the format of the
response as described in the previous section. For grounded
videoQA, we prompt the model to perform both grounding
and answering. For open-ended videoQA on MSVD-QA
and ActivityNet-QA, we prompt the model to generate only
answers. Inference takes 0.6 seconds on average to generate
the grounded answers on an A100 GPU.

Implementation details. We use CLIP-ViT-Large
[34] as the vision encoder and Mistral-7B Instruct [16] as
the LLM. MS-VLC comprises two RegNet stages, sepa-
rated by a 3D conv layer. We sample 16 frames at the dense
scale and 4 frames at the sparse scale. In the first vision-text
alignment stage, we train for one epoch with a batch size of
256 using the AdamW optimizer [27]. The learning rate is
set to le-3 for the alignment stage and lowered to 2e-5 for
the instruction tuning stages. We use video-text pairs from
Video-ChatGPT [28] to train MS-VLC at the first stage of
training. The first stage of training takes 54 hours, and the
latter two stages take 7 hours each with 8 A100 GPUs.

4. Experiments

We first describe the datasets and metrics, compare TOGA
with the state-of-the-art, and perform analysis and ablation
studies. Then, we present failure cases and discuss limita-
tions and future directions.

4.1. Datasets and metrics

We evaluate TOGA on four videoQA benchmarks: NExT-
GQA [49] and RexTime [3] for grounded QA, MSVD-
QA [50] and ActivityNet-QA [55] for open-ended QA.
NExT-GQA [49]. This is designed to evaluate weakly
supervised grounded videoQA. Unlike other videoQA
benchmarks [13, 44, 51] consisting of short 3-15 second-
long videos, NEXT-GQA selects long videos with an
average length of 40 seconds. Each video has multiple
questions, and the answers’ grounding can overlap. The
videos include a sequence of atomic events, and the
questions involve interaction between multiple actors and
objects. Questions are of two types: causal why/how
questions and temporal questions with when/before/after
clauses. Causal questions, such as Why are there
two men standing at the center island
and holding their camera?, require localizing
the evidence of the answer, which is Recording for this
question. Temporal questions, such as What did the
boy do after the green man walked past
him?, require understanding the temporal evolution of the
events to generate an answer such as Look at the man
in green. The train set consists of 3,870 videos and
34,132 QA pairs without the grounding annotations. The
test set consists of 990 videos with 5,553 QA pairs. Though
the dataset provides multiple-choice answers, we generate
open-ended responses without observing the options.
ReXTime [3]. ReXTime is a benchmark designed to
evaluate temporal reasoning abilities within video events.
It specifically focuses on the challenging scenarios where
questions and answers occur in different video segments,
necessitating an understanding of cause-and-effect relation-
ships across time. The benchmark comprises 921 validation
samples and 2,143 test samples. We utilize this dataset for
zero-shot evaluation, and directly evaluate our model on the
test samples without any fine tuning on this dataset.
Metrics for grounded videoQA. We consider five met-
rics: intersection over union (IoU), intersection over pre-
diction (IoP), IoU@0.5, IoP@0.5, and Acc@GQA pro-
posed in NExT-GQA [49]. For ReXTime [3], we use IoU,
IoU@0.3 and IoU@0.5. IoU measures the overlap between
the ground truth and predicted groundings. IoP measures
the portion of predicted grounding containing the ground
truth, similar to precision. IoU@0.5 and IoP@0.5 refer to
the cases where IoU and IoP > 0.5. While these metrics fo-
cus on grounding, Acc@GQA focuses on both the correct-
ness of the answers and correct grounding with IoP > 0.5.
Apart from these metrics, we consider the Acc@QA metric
for QA performance in the supplementary section.
MSVD-QA [50]. This dataset considers open-ended
video QA where the videos are selected from the video-
description pairs of the MSVD dataset [2]. QA pairs for
a video are generated from the associated descriptions [11].



Open-ended evaluation | mIoU mloP IoU@0.5 IoP@0.5 Acc@GQA
IGV [24] (MM ’22) X 14 214 9.6 18.9 10.2
Temp[CLIP](NG+) [34, 49] (CVPR '24) X 12.1 25.7 8.9 25.5 16
FrozenBiLM (NG+) [49, 52] (CVPR ’24) X 9.6 242 6.1 23.7 17.5
SeViLA [54] (NeurIPS '23) X 21.7 29.5 13.8 229 16.6
LLoVi [56] (arXiv '24) X 20 37.3 15.3 36.9 24.3
Grounded-VideoLLM [41] (arXiv '24) X 21.1 34.5 18 34.4 26.7
VideoStreaming [33] (NeurIPS °24) X 19.3 322 13.3 31 17.8
TOGA (Ours) v 244 40.5 21.1 40.6 24.6

Table 1. Comparison with the state of the art on NEXT-GQA [49]. TOGA improves the state of the art on the grounding metrics. Other
approaches select an answer from a fixed set of options, while TOGA generates open-ended answers. Note that [41] uses ground truth
labels for temporal grounding from other datasets (e.g., ActivityNet-Captions [20]) and creates grounding labels with GPT-4 guidance.
[33] utilizes ground truth temporal labels from Panda-70M [4] to curate grounding labels. TOGA does not use explicit grounding labels.

It includes 1,970 video clips and 50K+ QA pairs.

ActivityNet-QA [55]. This dataset considers open-
ended video QA with videos selected from ActivityNet [6].
The videos are collected from YouTube. The dataset con-
sists of 5,800 annotated videos and S8K QA pairs. The QA
pairs are crowd-sourced by human annotators.

Metrics for open-ended QA. We consider two metrics:
accuracy and score. An LLM generates a yes/no response
by comparing the ground truth and predicted answers. The
percentage of ‘yes’ responses is the accuracy metric. The
LLM also provides a score between 1 to 5 for the compar-
isons. We report the average score.

LLM-based evaluation. Commonly, grounded
videoQA approaches consider a closed-set setup where
answer options are available during inference, and the goal
is to choose the correct option [49, 54, 56]. To compare our
open-ended approach with other closed-set methods, we
need to choose an option among the available choices and
calculate the metrics. For this, we use another pretrained
LLM to select an option with the highest similarity to our
prediction. Such LLM-assisted evaluation is commonly
used in open-ended videoQA [5, 25, 28]. We use GPT-3.5-
turbo [32] to be consistent with these. We also experiment
with the openly available LLama 3.1 [40] for evaluation
and present the results in the supplemental material.

4.2. Comparison with state of the art

Grounded videoQA. We compare TOGA with the state of
the art on NEXT-GQA [49] and show the result in Tab. 1.
TOGA outperforms the existing approaches on grounding
and on generating correct answers. LLoVi [50] is a zero-
shot approach, while other methods are weakly supervised.
It should be noted that our open-ended setup is more chal-
lenging than the closed-set setup followed in the existing
approaches since the model is not able to view the op-
tions while generating the answer. Additionally, other ap-
proaches generate the grounding output separately - either
using a post-hoc approach, or using separate modules for
answering and grounding. However, we generate the an-
swer and the grounding jointly. We believe that capturing
the multi-scale temporal features and instruction-tuning the

Model mloU R@1 (IoU=0.3) R@1 (IoU=0.5)
Non Generafi UniVIG | 28.17 41.34 26.88
onLeneralive | oG.pETR | 23.87 31.31 16.67
VTimeLLM | 20.14 28.84 17.41
TimeChat | 11.65 14.42 7.61
LLM based LITA 21.49 29.49 16.29
Ours 25.53 29.91 19.79

Table 2. We compare our generative LLM-based grounding

method against other state-of-the-art methods on the ReXTime [3]
zero-shot grounding task. The best generative scores are shown in
bold, and the best non-generative model scores are underlined.

Method MSVD-QA ActivityNet-QA
Accuracy  Score | Accuracy Score
FrozenBiLM [52] NeurIPS '22 322 - 24.7 -
VideoChat [23] (arXiv '23) 56.3 2.8 - 22
LLaMA-Adapter [58] (ICLR 24) 54.9 3.1 34.2 2.7
Video-LLaMA [57] (EMNLP °23) 51.6 2.5 12.4 1.1
Video-ChatGPT [28] (ACL '24) 64.9 33 35.2 2.7
Chat-UniVi [17] (CVPR 24) 65 3.6 458 32
Video-LLaVA [25] (EMNLP ’24) 70.7 39 453 33
Video-LLaMA2 [5] (arXiv '24) 70.9 3.8 50.2 33
Ours 73.8 39 52.0 34

Table 3.  Comparison with the state of the art for open-ended
videoQA on MSVD-QA and ActivityNet-QA. We outperform ex-
isting approaches against both metrics.

model to jointly predict answers with the grounding helps
us achieve this performance.

Zero-shot grounding. We evaluate our approach on the
ReXTime benchmark [3] on the task of zero-shot query
grounding. We compare our method with other genera-
tive LLM-based methods in Tab. 2. We also include non-
generative grounding models for reference, but it is impor-
tant to note that these non-generative methods can not an-
swer open-ended queries like the generative methods.

Open ended videoQA. We consider MSVD-QA and
ActivityNet-QA for this task. As shown in Tab. 3, TOGA
outperforms the state of the art on both datasets. We believe
that capturing the multi-scale features with the MS-VLC en-
ables TOGA to accurately answer questions.

Qualitative results. We include some qualitative exam-
ples from the NExT-GQA dataset in Fig. 4. We can observe
that due to the open-ended nature of our setup and because
of the fact that the model is not seeing the options to the
question, the model can generate responses similar in mean-



Q: Why is the boy playing with a water bottle?
: drinking : drinking [0, 33]

113.9s
’13.5s

0s

T
Q: What does the boy do after rolling over in the middle? emp

: touch the camera

: look at camera [33, 44]

15.7s ¢ ,19.3s
13.5s ¢ 118.0s

Q: What are the two men trying to do with the toy transportétions?
: ride it s ride it [0, 75]

0Os ¢

113.5s
Q: Why are the two men laughing and smiling?
: happy playing with toys : happy playing with toys [0, 50]
2.6s ¢ 3 9.7s
0Os ¢ ) 9g

0.1s )12.65  Temp

Q: How did the man in pink consume the food on the table?

Causal

Q: How is the dog positioned before wave comes?

Lie on its belly : lying on the ground [0, 48]
C 210.1s
Os 2 7.2s
Q: How did the dog react to the coming waves? Causal
: run away : run away [60, 72]
8.8s 112.9s
Os ¢ 110.8s

out of the bowl? Temp
: put into his mouth : eat [60, 77]
9.4s ) 14s
8.4s ¢ ) 10.8s

: use spoon : use spoon [0, 100] Causal

2.7s € 1 13.9s

Os ¢ ? 14s

Figure 4. Qualitative results on NExXT-GQA. We present the ground truth and predicted answers with groundings. Ground truth segments
are marked in green, and predicted segments are marked in yellow. A causal and a temporal question are selected from a set of questions
for each video. TOGA mostly generates correct answers and grounding. In some cases, predictions are different from the ground truth
(GT) answers. This can be attributed to the open-ended nature of our approach.

ing to, but not matching, the ground truth exactly. Along
with generating the answer, our method is able to simulta-
neously ground the answer. Each video in NExT-GQA has
multiple questions, and we show examples of one tempo-
ral and one causal query for each video shown here. We
also include qualitative examples taken from the MSVD-
QA dataset in Fig. 5. Here as well, the model may gener-
ate answers that do not match the ground truth exactly but
might convey the same meaning.

4.3. Ablation and analysis

We perform ablations on major components of our approach
and analyze the results on various experimental setups.

Ablation on multi-scale vision-language connector.

Our MS-VLC module processes videos at two resolu-
tions (16 dense, 4 sparse frames). To demonstrate its ef-
fectiveness, we evaluated frameworks with single tempo-
ral resolutions on NExT-GQA [49]. We categorize an-
swers by true grounding length (short: < 30% video,
medium: 30 — 70%, long: > 70%) and report IoU in
Tab. 4. The multi-scale model consistently outperforms
single-scale variants, with a more pronounced advantage for
short and long-duration events.

Ablation on the consistency constraint. For weakly su-
pervised grounding, at the final stage of training, we impose
a consistency constraint between the grounding response
and the response generated by a question with the same
grounding. To justify this, we train a variant without this
stage of training where we instruction tune the model only

Query Type
Model type All ‘ short medium long
Sparse only 20.0 | 16.2 28.9 47.5
Dense Only 22.1 | 183 322 32.1

Multi-Scale (MS-VLC) | 24.4 | 20.5 34.7 49.3

Table 4. The MS-VLC improves grounding performance across a
range of temporal durations of queries.

with pseudo-temporal groundings. This results in an mIoU
of 12.1, which is significantly lower compared to the mloU
of 24.4 on NExT-GQA with the final stage of training.

Analysis of the type of questions. NExT-GQA con-
sists of two primary types of questions: causal and tem-
poral queries. Causal questions include why and how
questions.  Temporal questions are divided into past,
present, and future types based on the timing of the an-
swer. For example, What did the boy do after
standing up is an example of a future temporal ques-
tion. Both of these question types involve different lev-
els of reasoning. We present the results corresponding
to the Acc@GQA metric in Tab. 5. We notice that the
temporal questions are more difficult than causal ques-
tions, as they require understanding the sequence of events.
Temporal questions, especially those referring to the past
or future, e.g. What did the boy do after he
stood up from the ground? require more long-
term reasoning to generate correct answers with grounding.

Analysis of the number of frames. We explore the ef-



Causal Temporal
Why How | Present Past Future
Acc@GQA ‘ 26.1 274 ‘ 234 18 18.1

Question types

Table 5. Acc@GQA for causal and temporal question types on
NeXT-GQA. We observe that temporal questions are more diffi-
cult, specifically questions referring to past and future events.
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Q: What is a chef putting
things into?

Q: What is a man showing
new invention in?
GT: lab : laboratory  GT: mixer : mixer

1%

Q: Whatdo two youigﬁ boﬁys dressed
up as firemen inspect?

Q: What stumbles as it
tries to walk?

GT: penguin : penguin GT: truck : firetruck

Figure 5. Qualitative results for open-ended videoQA on MSVD.
TOGA can generate correct but slightly different answers from the
ground truth due to its open-ended nature.

fect of the frame count on the grounding performance on
NExT-GQA. We choose a setup (16, 4), i.e., 16 frames for
the dense and 4 for the sparse scale. We experiment with
other setups with lower frames (8, 2) and higher frames
(32, 8). The (8, 2) setup achieves a mloU of 20.8. The
(32, 8) setup achieves a better mloU of 21.5 with a three
times higher training time. Both are lower than the mloU
of 24.4 with (16, 4). We believe more frames better encode
the video features, but may introduce spurious features and
make it harder to train the model. More combinations, along
with an interleaved frame version, are in the appendix.
Analysis of temporal representation. We consider a
temporal representation of [<start>, <end>] where start
and end are integers € [0, 100], with O marking the start of
the video and 100 marking the end. We chose this range
based on the length of the videos in seconds. We scale the
[0,100] range to video start and end times in seconds. We
also considered a scenario where the start and end are floats
€ [0, 1]. We achieve a lower mIoU of 19.0 on NeXT-GQA
with the [0, 1] range, compared to 24.4 with [0,100]. We
notice it is harder to learn the floating point representation
with language tokens. A similar behavior is shown in [29].
Failure cases. We present the failure cases on ground-
ing and QA tasks in Fig. 6. On top, we present a case from
NExT-GQA where TOGA ’s response is somewhat rele-
vant but does not match the ground truth. This is due to
the open-ended answer generation. In another instance, we
generate a closely matched answer smile vs. laugh, but
the grounding is inaccurate. This is due to the weakly su-

Q;: What does the kneeling boy do after the robot goes out of the paper?
GT: Pick it up : Adjust the position [76, 100]

9.2s

9.1s €

Q,: How does the boy in red react after the robot turns left?
GT: laugh : smile [10, 100]

5.28 c=————r—— 8.6s
1.2s ¢ ) 128

125

s

Q: What does a person hold up? Q: Who is a man with glasses talking to?

GT: beach : towel GT: person : interviewer

Figure 6. The top part presents an example from NExT-GQA
where TOGA fails to ground the answer. The bottom part presents
two examples from MSVD. TOGA generates answers that may be
relevant but do not exactly match the GT.

pervised learning, where we train with noisy grounding la-
bels. At the bottom, we present two examples from MSVD.
TOGA generates a suitable answer of towel in response
to what does a person hold up, which is differ-
ent from the ground truth. In the other case, the response
interviewer is a special type of person.

Limitations. We generate pseudo labels to train TOGA
to perform grounding in a weakly supervised setup. We
consider one grounding interval for each answer. Thus,
we cannot handle cases where the evidence for an answer
is distributed across multiple intervals. We also answer
all questions for a video independently. However, captur-
ing the temporal dependencies between the answers could
help generate more accurate answers with groundings. This
is particularly helpful for the temporal questions with be-
fore/after clauses on NExT-GQA.

5. Conclusion

We have presented TOGA , a vision-language model for
open-ended video QA with temporal grounding. We op-
erate in a weakly supervised setup and do not rely on tem-
poral annotations. TOGA consists of an MS-VLC module
to capture both high-frequency and low-frequency temporal
features. We have instruction tuned the MS-VLC and lan-
guage decoder to jointly generate open-ended answers with
temporal grounding. Unlike existing approaches, we do not
require the options to generate an answer. Our experiments
show that jointly generating grounded answers improves
the accuracy of both answers and temporal grounding. We
have evaluated TOGA on NExT-GQA for grounded QA and
MSVD-QA and ActivityNet-QA for open-ended QA. We
achieve state-of-the-art performance on these benchmarks.
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